

Maestría en astrofísica IRyA-UNAM

Problemas Contemporáneos De Astronomía Extragaláctica Astrofísica Relativista

Omaira González Martín, responsable de posgrado jposg@irya.unam.mx Karin Hollenberg, administración de posgrado k.hollenberg@irya.unam.mx Página de posgrado: https://posgrado.irya.unam.mx Contacto para pedir información: posgrado@irya.unam.mx

Problemas Contemporáneos De Astronomía Extragaláctica Astrofísica Relativista

Materia optativa (6 créditos / 48 hrs.sem)

Campo de Conocimiento.- Astrofísica Teórica

Objetivo general.- El curso es una introducción a temas de astrofísica teórica en los que la teoría de la relatividad general juega un papel preponderante. Entre los objetos y fenómenos a estudiar se encuentran: objetos compactos (e.g. enanas blancas, estrellas de neutrones, agujeros negros), colapso gravitacional, acreción, binarias de rayos X, núcleos activos de galaxias, explosiones de supernova y destellos de rayos gamma. Durante el curso se pondrá especial énfasis en desarrollar las diferentes herramientas tanto teóricas como numéricas que son necesarias para el estudio de estos fenómenos

Emilio Tejeda emilio.tejeda@umich.mx Instituto de Física y Matemáticas, UMSNH

Temario

Introducción a la astrofísica relativista

- Breve recuento histórico
- Fenómenos y observaciones
- Escalas: distancias, masas, velocidades, luminosidades
- ¿Cuándo y por qué son relevantes los efectos relativistas?

Repaso de relatividad especial y general

- Álgebra vectorial y notación de Einstein
- Principios de relatividad
- Tensores métricos y tipos de intervalos
- Transformaciones de Lorentz
- Diferenciación covariante. Ecuación geodésica
- Gravitación y geometría del espacio-tiempo. Ecuaciones de Einstein
- Mecánica, electromagnetismo e hidrodinámica relativistas

Maestría en astrofísica IRyA-UNAM

Problemas Contemporáneos De Astronomía Extragaláctica Astrofísica Relativista

Omaira González Martín, responsable de posgrado jposg@irya.unam.mx
Karin Hollenberg, administración de posgrado k.hollenberg@irya.unam.mx
Página de posgrado: https://posgrado.irya.unam.mx
Contacto para pedir información: posgrado@irya.unam.mx

Estrellas y objetos compactos

- Formación, estructura y evolución estelar
- Inestabilidades. Teorema del virial. Presión de radiación. Límite de Eddington
- Fin de la evolución: enanas blancas, estrellas de neutrones, pulsares, supernovas

Fenómenos de acreción

- Acreción esférica y de viento
- Acreción en sistemas binarios
- Discos de acreción. Modelo α de Shakura-Sunyaev

Agujeros negros

- Historia del concepto
- Colapso gravitacional
- Soluciones de Schwarschild y de Kerr
- Movimiento de partículas de prueba
- Termodinámica de los agujeros negros. Radiación de Hawking
- Procesos de extracción de energía (Penrose, Blandford-Znajek)
- Agujeros negros en astrofísica. Agujeros negros en binarias de rayos X. Núcleos activos de galaxias. Destellos de rayos gamma. Disrupción por fuerzas de marea. Jets

Literatura sugerida

- 1. M. A. Abramowicz, P. C. Fragile. Foundations of Black Hole Accretion Disk Theory. Living Reviews in Relativity. 16. 2013
- 2. J. Frank, A. King, D. Raine. Accretion Power in Astrophysics. Cambridge University Press. 2002
- 3. C. Misner, K. Thorne, J. A. Wheeler. Gravitation. Freeman. 1973
- 4. Romero, Vila (eds). Introduction to Black Hole Astrophysics. Lecture Notes in Physics, Vol. 876. Springer-Verlag. 2014
- 5. S. Rosswog, M. Bruggen. Introduction to High-Energy Astrophysics. Cambridge Uni- versity Press. 2007
- 6. S. L. Shapiro, S. A. Teukolsky. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. John Wiley & Sons Inc. 1983